B-III Analysis IV Final examination 2017.

Answer all the 10 questions. Each question is worth 6 points.

If you are using any result proved in the class, you need to state it correctly. If the answer is an **immediate** consequence of the result quoted by you, you need to **prove** the result quoted by you. We consider \mathbb{R}^n equipped with Euclidean metric and length function.

- Show that the set of irrational numbers with the usual metric is a separable metric space.
- 2. Let (X, d) be a complete metric space. Let $A \subset X$ be a totally bounded set. Show that \overline{A} is a compact set.
- 3. Let (X,d) be a separable metric space. Let $\{U_{\alpha}\}_{{\alpha}\in\Delta}$ be a family of open sets such that $X=\cup_{{\alpha}\in\Delta}U_{\alpha}$. Give detailed proof to show that there is a countable set $A\subset\Delta$ such that $X=\cup_{{\alpha}\in A}U_{\alpha}$.
- 4. Consider the space $\ell^2 = \{ \{\alpha_n\}_{n \geq 1} : \sum_{1}^{\infty} |\alpha_n|^2 < \infty \}$, with the usual metric. Let $\mathcal{F} = \{ \{\alpha_n\} \in \ell^2 : \sum_{1}^{\infty} |\alpha_n|^2 \leq 1 \}$. Show that \mathcal{F} is not a compact set.
- 5. Let $f: R \to R^3$ be such that f is differentiable and $f(R) \subset \{x \in R^3 : \|x\| = 1\}$. Show that for every $t \in R$, f(t) is orthogonal to f'(t).
- 6. Let $f: R^2 \to R^2$ be a continuously differentiable function. Suppose f'(0) has non-zero determinant. Let $U = \{ x \in R^2 : \|f'(x) f'(0)\| < \frac{1}{2\|f'(0)\|} \}$. Show that f(U) is an open set.
- 7. Let $f:[1,\infty)\to R$ be such that f is Riemann integrable in [1,a] for all $a\ge 1$ and $\int_1^\infty f(t)dt$ converges absolutely. Show that

$$\lim_{\alpha \to +\infty} \int_{1}^{\infty} f(t) \sin \alpha t \ dt = 0.$$

8. Let g be a continuous function of bounded variation on [0,1] such that g(1)=1. Derive the formula,

$$\frac{\pi}{2} = \lim_{\alpha \to +\infty} \int_0^1 g(t) \frac{\sin \alpha t}{t} dt.$$

9. Let $\{\phi_n\}_{n\geq 0}$ be an orthonormal sequence on $[0,\pi]$. Let \mathcal{R} denote the set of all Riemann integrable functions on $[0,\pi]$. For a $f\in\mathcal{R}$, let $a_n=\int_0^\pi f(t)\phi_n(t)dt$. Suppose for every $f\in\mathcal{R}$, $\int_0^\pi |f|^2dt=\sum_0^\infty |a_n|^2$. For $f,g\in\mathcal{R}$, let $\{a_n\}_{n\geq 0}$, $\{b_n\}_{n\geq 0}$ are the corresponding sequences of Fourier coefficients. Show that the series $\sum_0^\infty a_n\overline{b_n}$ converges and

$$\sum_{0}^{\infty} a_n \overline{b_n} = \langle f, g \rangle.$$

10. Let $f:[a,b]\to R$ be a Riemann integrable function. Let $\{\psi_n\}_{n\geq 1}$ be an orthonormal sequence on [a,b]. Suppose the Cesaro sums corresponding to the Fourier series of f converge uniformly to f. Show that

$$\int_a^b |f(t)|^2 dt = \sum_1^\infty |\int_a^b f(t) \overline{\psi_n(t)} \ dt|^2.$$